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It has been observed experimentally by Candel, Julienne & Julliand (1975) that a 
monochromatic test tone generated by a source inside a jet is received outside as a 
broad frequency band of definite shape. This phenomenon of spectral broadening 
occurs during transmission through the shear layer, which generally has a randomly 
irregular and unsteady shape, contains in addition distributed turbulence, and separates 
the jet and the ambient medium. We show in the first place that, in the audible range 
of frequencies, neither the approximation which treats the shear layer as a scattering 
interface with a convected undulating shape nor the opposite, high frequency limit 
obtained by means of asymptotic estimation of integrals derived for the diffraction 
of rays in turbulence is sufficient to provide a satisfactory theory of the observations. 
The refraction integrals obtained in part 1 have to be evaluated exactly in order to 
account for the phenomenon of spectral broadening, the methods used possibly being 
of interest in other branches ofwave theory. The formation of the transmitted spectrum 
from an incident tone can be illustrated by representing a simple shear layer as an 
array of elements each re-radiating energy received from the source with its own 
characteristic attenuation and frequency shift. A computer program is used f o  obtain 
spectra under conditions corresponding to the experiments of Candel, Gu6del & 
Julienne (1975) and gives encouraging agreement with their measurements, which 
were made with high frequency sources immersed in low speed jets. The theory can 
also be applied to the prediction of spectra received at various angles to the axis of 
high subsonic jets, but depends on extrapolation when supersonic exhausts are 
considered. We conclude with an example of the possible relevance of spectral 
broadening as a means of reducing the noise disturbance from current jet-powered 
aircraft, such as Concorde. 

1. Introduction 
The propagation of waves in a random medium, for example the transmission of 

sound through a turbulent shear layer, is accompanied by the transfer of energy into 
a wider band of frequencies. This phenomenon of spectral broadening is apparent 
when, say, a monochromatic source is located inside a jet and the field radiated to the 
ambient medium is received over a spectrum of definite shape. Understanding the 
connexion between the features of audible spectra and the physical properties of the 
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shear layer could be a first step towards finding ways of modifying the latter in order 
to reduce the noise disturbance of current jet-powered aircraft. 

1 . 1 .  Aerodynamic refraction of jet noise 
The main practical stimulus for the study of aerodynamic acoustics has been the 
problem of jet noise, whose generation was originally modelled by Lighthill (1 952) 
in a manner subsequently (1954) shown to be in basic agreement with experiment. 
The application of the theory to estimate the noise of aircraft (Lighthill 1962) is 
complicated by refraction in the shear layer behween the turbulent jet and the ambient 
medium, which has been the subject of various attempts at  theoretical modelling 
for more than a decade (e.g. Phillips 1960; Ffowcs Williams 1974). By using methods 
that may require further theoretical elucidation, Rlani (1976; see also Balsa 1976a, b) 
has succeeded in obtaining directivities consistent with experiment a t  low frequencies. 
However the agreement deteriorates at  high frequencies, for which refraction pheno- 
mena are more pronounced and where the noise disturbance of current jet aircraft 
appears to be more concentrated. 

These refraction studies have been concerned with the directional distribution of 
energy, the spectra emitted by the sources being assumed to be unchanged during 
transmission except, possibly, for an overall frequency shift. However, Candel, 
Julienne & Julliand (1975) found that a test source emitting a monochromatic tone 
in the interior of a jet was received over a frequency range which is broader the higher 
the frequency of the original tone. The changes in the spectral shape under various 
conditions provide preliminary evidence that spectral broadening is associated with 
the presence of turbulence in the shear layer. The theoretical modelling should also 
take account of the irregular and unsteady interface that may be assumed to separate 
regions of the flow with different mean propdies and thereby contribute to the 
random scattering of sound during transmission. 

The theory of the scattering of sound by a static irregular interface (How0 1976) 
has benefited from optical studies (Born & Wolf 1959), and the mathematical methods 
used in the present work to treat spectral as well as directional redistribution of 
energy (part 1) could also be applied to optics or other types of wave. This would be 
a continuation of the study of the scattering of electromagnetic waves by rough 
surfaces (Beckmann & Spizzichino 1963), which has already been applied to the sea 
clutter return of radar signals (Sholnik 1962) and to the reflexion of radio waves from 
the bed of glaciers and the surface of the moon (Berry 1973). In the case of acoustic 
waves there is the underlying question of +he stability of shear layers, either free or 
excited by acoustic radiation (Jones 1974, 1977). Further references would only 
reinforce the impression that, whereas the aerodynamic generation of sound is well 
established with a fairly thorough theory, the refraction of jet noise is connected with 
matters requiring further study (e.g. the stability of shear layers, modifications of 
Kirchhoff’s integration theory), and also basic observable phenomena such as spectral 
broadening appear to be largely unnacounted for. 

1.2. Acoustic and optical broadening 

Although we shall use the terminology of acoustics in treating the problem of sound 
propagation through a turbulent shear layer, our discussion may be extended without 
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much difficulty to the analogous problem in optics. For wavelengths much larger than 
the thickness of the shear layer the latter could be modelled as an undulating interface 
of steady shape which decomposes an incident monochromatic wave into a funda- 
mental tone plus convection harmonics, as has been illustrated by considering a 
sinusoidal interface (Rayleigh 1945, vol. 2, p. 89) in motion (Clarke 1973). A t  high 
frequencies, for which the propagation through a thick layer of turbulence may be 
treated by means of the geometrical-acoustics approximation together with asymp- 
totic estimation of diffraction integrals, the energy of an incident tone is spread over 
a continuous, smooth broad band, with the maximum at the source frequency. The 
former model of an interface with a steady shape is applicable at  low frequencies, 
which do not appear to be dominant in jet noise, which is fortunate since sound of 
long wavelength is difficult to attenuate. On the other hand the asymptotic estimate 
of integrals derived using geometrical acoustics is valid only for frequencies near or 
beyond the limit of audibility. 

A theory of the transmission of sound in the audible range of frequencies must 
therefore include the effects of an interface of random shape between the jet and the 
ambient medium as well as distributed turbulence in the shear layer. In addition the 
refraction integrals, which may also appear in other branches of wave theory, require 
exact evaluation, specifically by means of an expansion in power series followed by 
a multinomial expression in terms of Hermite polynomials leading to the ubiquitous 
Gaussian integrals. The low frequency limit corresponds to the zero-order term of the 
series, which appears as the incident tone (or spike) unchanged except for attenuation 
depending on the ratios of certain scales of the shear layer to the wavelength of 
sound, i.e. greater the higher the tone frequency. The subsequent terms of the series 
form side bands which generally exhibit a dip near the spike, rise smoothly over 
frequencies not found in the source, and finally decay in a manner which is reminiscent 
of the asymptotic case and corresponds to the higher-order terms of the series. 

A side band can be constructed from a model array of re-radiating elements each 
of which transmits the incident energy (from the source) with its own attenuation and 
frequency shift and is therefore responsible for one interval of the spectrum received 
by the observer. The formulae evincing these general properties can also be used in a 
computer program to predict the spectra transmitted through a shear layer from a 
source in the interior of a jet to an observer in the ambient medium. Comparison of 
computed spectra under conditions corresponding to the experiments of Candel, 
Gut5del & Julienne (1975) shows encouraging agreement (figures 3 and 4)  for different 
shear-layer scales, low jet speeds and high source frequencies. The spectra received 
in directions away from the vertical can be predicted for low speed as well as for high 
subsonic jets (figure 2), though in the latter case accurate measurements with test 
sources might be difficult to perform. 

1.3. Attenuation of audible disturbances 

Some work whose value stands comparison with the voluminous recent literature 
was published by Rayleigh, curiously enough not in his authoritative treatise on 
acoustics (first published in 1877, see Rayleigh 1945), but in a series of three papers 
published over a period of four decades (1873, 1889, 1915). These were concerned with 
the optical phenomenon of ' widening of spectrum lines' of a substance (under chemical 
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analysis), which he ascribed to  scattering by gas molecules with a velocity distribution 
satisfying a Maxwellian law. The phenomenon underlying the spectral broadening of 
sound diffracted by turbulence is not very different, the random velocity fluctuations 
of turbulence causing phase shifts described by a Gaussian probability distribution 
(see part 1,  Campos 1978). The lucidity and conciseness of Rayleigh’s exposition 
(e.g. 1915) are as exemplary as ever, and ‘were he alive today. . . he might be taking 
an interest’ (Lighthill 1962) in the problem of aircraft noise, which undoubtedly he 
would have solved. 

The present theory applies to the transmission of sound through a shear layer of 
moderate supersonic speed as far as the effects of distributed turbulence and changes 
in density (and sound speed) are concerned. The effect of shock waves on the refraction 
of sound is represented by a modification of the scattering and diffraction scales, in 
order t o  perform a preliminary assessment of spectral broadening in the important 
practical case of Concorde. It is shown in figure 5 that  if the thickness and degree of 
irregularity of the shear layer are doubled then a discrete tone emitted by a flow 
source within the exhaust a t  a frequency of 8 kHz (corresponding to  the order of 
magnitude of the turbine rotation speeds of modern turbojet engines) will be trans- 
mitted as broad-band noise, which is audibly less objectionable (about 10 dR below). 
How t o  make the shear layer twice as thick and irregular without reinforcing the 
sources, which could detract from the attenuation envisaged, is a matter of conjecture 
that only experiment is likely to  settle. 

Our account of spectral broadening proceeds from the tleorotical to  the practical 
point of view through the following stages: in $ 2 the results of part 1 are taken as the 
starting formulae for an analysis of spectra, in the first instanre in the low and high 
frequency limits to  evince some of the features subsequently found combined in the 
intermediate audible range; in $ 3  the phenomenon of spectral broadening is reviewed 
as a formal evaluation of refraction integrals, and is illustrated by the model of an 
array of re-radiating elements; in 9 4 computed and measured spectra are compared 
for low jet speeds, for which experiments with test sources are available, high subsonic 
directional spectra are predicted and the extension to  supersonic exhausts gives 
some hope regarding the possibility of reducing jet noise. The exposition includes a 
number of illustrations (figures 1-5) which could be of some interest to  readers 
concerned with jet noise as a brief recollection of some of the features of spectral 
broadening of sound. 

2. The analysis of frequency spectra 
I n  order to  ascertain which model of a shear layer might be applicable to  audible 

disturbances we shall take 1 = 10 cm as a typical scale of flow in the shear layer. The 
model of an interface of steady shape applies only to  wavelengths h > 1, e.g. h 2 100 cm, 
corresponding t o  frequencies o 5 300Hz, which are only slightly attenuated by 
small-scale distributed inhomogeneities of the medium. The geometrical-acoustics 
theory of diffraction a t  high frequency by shear-layer turbulence requires that 
A M ’  < I and the asymptotic estimation of integrals imposes the more restrictive con- 
dition h2 < 1c1’2l2,  where the perturbation Mach number M’ is low even for moderately 
supersonic jets, and in these cases the upper limit of audibility h N 1.7cm (in air a t  
one atmosphere) is exceeded, i.e. the model would then apply mostly t o  ultrasonic 
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sound. Neither approximation seems adequate over the full audible range 20 Hz- 
20 kHz nor, in particular, in the higher range of frequencies where refraction effects 
are more marked and the noise disturbance from aircraft is concentrated. A study 
of low and high frequency limits does, however, serve to introduce some of the dis- 
tinctive features of spectra which are observed combined in a modified form in the 
audible range. 

2.1. Discrete ton,es at low frequency 

We consider (figure 1 b )  a point source of frequency w,, convecting a t  constant velocity 
U within a jet of velocity V, density p and sound speed c. This jet is separatied from a 
stationary ambient medium of mean density p, and sound speed c, by a shear layer, 
in which the mean velociby is aV (0 < a < 1 ) .  The wave field radiated into the ambient 
medium is described by the spectral directivity I (6 ,  $, w ) ,  which specifies the energy 
flux a t  frequency w per unit solid angle a t  a location defined by the spherical polar 
co-ordinates (0, #) of the observer relative to tho source at  the time of emission of the 
sound : 

RC (Y .  r) 
I (6 ,  #, w )  = ( 64n5p, r;)-l (sin2 0 cos2 $/( 1 -No cos 6)} 1 loS/Ay12 

x exp { i (g  - G )  . z + i ( o  - w,,- g . U +aV . (g- G ) ) t ) C ( z ,  t)d2gd2zdt. (1) 

This formula is derived in part 1 [formula (63a), with substitutions from (62a-c)]; 
g = (gl, g2) is the horizontal wave vector (in the shear-layer mean plane) of the sound 
emitted by the source and G the horizontal wave vector received by the observer, 
i.e. G = (w/c,)(cos0,sin0sin$). It is assumed that g is conserved across the shear 
layer and is related to y and I', the incident and transmitted normal wavenumbers 
(or x3 components of the wave vectors), which are given by 

P a ,  b)  

( 2 c ,  d )  

The function S indicates the multipolar character of the source, having originally 
appeared as an operator S(V,  a/iit) applied t o  the forcing term of the wave equation 
[part 1,  formula (22)]; the amplitude factor in the transmission coefficient for an 
incident plane wave is 2 / A  [part 1, formula (4 b)]  and we have denoted by 

(nl,Mo) ( V ,  u)/c, 

r(g) = {(a, + g . U)2/cg - g 2 ) t  

S ( g )  = S ( i g ,  i y ,  - i w ,  - ig  . U), 

y(g)  = {Loo + g . (U - V)I2/c2 -g2}4 

A ( g )  = 1 + @/Po) ( 1  - M cos 0) r / y .  

the Mach numbers of the source and jet. 
The general expression (1 ) for the spectral directivity involves integrations with 

respect to z and t over the mean plane of the shear layer and all time, and depends 
on a characteristic function C(z, t )  containing the phase shifts associated with trans- 
mission through the layer. For example, the phase shift for scattering by an irregular 
interface is given by (y  - I?) 5 [part I ,  equation (4a)] ,  where 5 is the displacement of 
the interface from the mean plane x3 = 0, e.g. 5 = h(z) for a shape consisting of cor- 
rugations perpendicular to the mean-flow direction ( z  = zl). If the wavelength of tihe 
sound is much larger than the thickness of the shear layer the latter behaves like a 
sharp interface of steady undulating shape. The scale of the undulations will depend 
on the typical size L of the eddies in the jet flow, convected at, say, a velocity aV 
(where 0 < a < 1 )  and corresponding to a Strouhal frequency w, 21 L/aV.  As an 
example of the transmission of sound at  very low frequencies we consider a convected 
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Infrasound 

h>>b 

Audible range 
I u2<< L 2  2 X2<< b2 

u2 2 X2 << L 2 ,  b2 

Source tone 
and symmetric series of 
convection harmonics 

Spike + side bands 
Spike: attenuated source tone 

Side bands: an interference effect 

A<< b2/M'2 

Ultrasound 

y - p  w* 

0:MhlL 

Continuous, smooth, convex 
broad band with maximum 

at source frequency 

periodic interface, of height h and nodal distance L, whose characteristic function 
CJz) = exp {i(r - J?) h(z/L)) is given by the following Fourier series expansion: 

n = - w  
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In the classical case of a sinusoidal interface h ( y )  = h sin y ,  the real part of the Fourier 
coefficient D,  would be a Bessel function jn(h{y - r>) of the first kind and order n 
(Watson 1927). On substitution of each term of (3a) into (l) ,  the space-time integra- 
tions give ( 2 ~ ) ~  times the product of delta functions 

m1- Gl + n P )  &7, - G,) a(w - wo - 91 u + aV(9, - GI)), 

which permits the d2g integral to be performed trivially, after which the remaining 
delta function implies that the spectrum consists of discrete tones. 

The frequency of the nth tone (n = - 00, . . . , + 00) is given by 

w, = w* + n(a V - U)/L, w* = uo/( 1 - M, cos 0 )  (4a, b )  

(where M, = U/c,)  and differs from the frequency w, of the source Doppler shifted 
to w*,  when in motion, by a multiple of Aw = (aV-  U ) / L .  The latter is associated 
with the convection of interfacial undulations of scale L at a velocity cz V - U relative 
to the source. To each tone, or convection harmonic, there corresponds an energy 
lobe, given by ( 2 ~ ) ~  times the integrand of (1 ) :  

where the asterisk denotes the complex conjugate and the expressian in square 
brackets is calculated for G, = g, + n/L, G,  = g, and w = w,. The complete solution 
specifying the low frequency spectral directivity is therefore 

+ m  

1-(8,9>@) = J i ( e , 4 ) $ ( w - w * ) +  S J , ( e , ~ ) D n ( y - r ) 6 ( w - w n )  (6) 
n= - m 
n+O 

and consists of the directivity Jo of a plane interface a t  the fundamental Doppler- 
shifted source frequency w, plus a symmetric series of tones (and the corresponding 
lobes), i.e. convection harmonics of frequency w, and directivity J, (see infrasound 
in figure 1 a ) .  For the case (Clarke 1973) of a sinusoidal interface h ( y )  = hsin y and 

so that higher-order convection harmonics have a decreasing amplitude for h/h < 1. 
The latter result was first obtained by Rayleigh (1945, vol. 2, pp. 89-96) for a static 
sinusoidal interface, for which case all the lobes (5) are evaluated at  the fundamental 
frequency (4b) .  The sequence of convection harmonics also disappears for a plane 
interface (even in motion), giving 

w, 9, w )  = lim w, A 0) = JO(8, $1 40 - w * ) ,  ( 7 )  
hlh + 0 

in which the plane-layer directivity, given by (5) with G = g and w = w* ,  is consistent 
with Howe (1975). 

2.2. Continuous broad band at high frequencies 

A t  the opposite extreme of high frequencies the shear-layer model must take account 
of the diffraction of sound rays by the turbulence within the shear layer. It can be 
predicted theoretically and appears to be consistent with experimental evidence that 
(part 1,  9 4.1) the statistics of the phase shift of waves transmitted through the shear 
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layer are Gaussian and can be specified by means of the high frequency characteristic 
function 

in which zi = ( t ,  z) where i = 0 ,  1, 2 are the co-ordinates of scattering events consisting 
of a time delay and spatial separation. For uncorrelated events E N 0 and (8) reduces 
to an attenuation exp ( - Q+), where Q+ is equal to the product of the squares of the 
Mach number of the turbulence PM(c,/c), the wavenumber k = {g2 +y2}4 and the 
thickness b of the layer and is increased by a factor of cosec 8 for oblique incidence. 
In  general (8) involves the autocorrelation coefficient 

(8) C + ( Z ~ )  = ~ X P  { -/3aN2(~o/~)* k2b2 COSBC O[l  - E(zJ]},  

where (part 1 ,  $4.2)  Lo is the refraction time and L, and L, are the longitudinal and 
transverse refraction lengths (i.e. in the direction x1 of the mean shear flow and in the 
perpendicular direction x, parallel to the shear-layer mean plane x3 = 0).  Scattering 
events separated by less than a correlation scale (z i  < Li, i = 0, 1 , 2 )  interfere, 
resulting in the amplification factor exp (Q ,  E )  in (8),  but since E < 1 for separate 
events, this compensates only partially for the independent attenuation exp ( - Q,). 

If the thickness of the shear layer is very large compared with the wavelength of 
the sound divided by the Mach number of the turbulence, so that Q+ 9 1, the asymp- 
totic approximation to (8) is obtained by expanding (9 )  in powers of ( z ~ / L ~ ) ~  to first 
order, to give the asymptotic characteristic function: 

C&i) = exp { - + (z,/.92)2 4- (%/.90)21), ( Ion)  

( l o b )  L?-2 = (3/L:)/32M2(~o/~)2 k2b2 C O S ~ C  8. 

The characteristic function C, = exp { - Q+( 1 - E ) }  = (1  - Q,) + Q+ E + O(Qt)  depends 
linearly on the autocorrelation coefficient E to the first order in Q+,  i.e. for small 
attenuation Q: < 1. In the opposite asymptotic limit of large attenuation (Q+ 9 1) 
( ion)  resembles the ' autocorrelation functions ' which are sometimes introduced 
empirically (e.g. Chernov 1967,  chap. 1). However, even in this limiting case the 
autocorrelation and characteristic functions have distinct properties, e.g. the asymp- 
totic refraction scales defined by ( l o b )  depend not only on the properties of the 
wave-bearing medium but also on the wavelength of sound: 9"cch. When (1On) is 
used to give an asympkotic estimate of ( I ) ,  the latter reduces to the product of three 
Gaussian integrals and leads to an expression which (as will be proved in Q 3.1) is valid 
to O ( m :  

where we have distinguished the observation, amplitude and broadening functions 
0, A, and Q,, respectively. The asymptotic spectral directivity I ,  is determined by 
evaluating the integral (1  1) for propagating incident and transmitted wave modes at 
the shear layer, corresponding to real values of y and I' only. In each observation 
direction (8, #), the conditions Re ( y ,  r) define a range of frequencies (w l ,  w 2 )  or 

w1 < w < w, 

over which a continuous broad band of sound can be received. 
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Appearing first in the asymptotic spectral directivity (1 1) is the observation 

(12) 
function 

@(O, 4) E (64n~p0c0)-1sin20sin24(1 -NocosO)-l, 

which must be multiplied by 2774 whenever one of the refraction scales is infinite [see 
(28)], e.g., for a plane interface devoid of turbulence, the multiplying factor is (2nb)3, 
giving a net numerical coefficient of 1 /87? in agreement with (5).  Next, the asymptotic 
amplitude function is defined by 

2 

i = O  
A&(d, G) = (JSJK/Y)2 n {=q+o(q4)}, (13a)  

K Q / c ~ ,  k {g*+y2}* = {(cJo+g.(U-V)}/Co. ( 1 3 h  c )  

The wavenumber (1 3 b )  received in the ambient medium, which is different from the 
wavenumber (13c) emitted in the jet, appears in A,, which is proportional to  the 
square of the modulus of the strength S of the source divided by y and (to the fifth 
order of approximation) t o  the product of the asymptotic refraction scales YoYl Y2. 
The latter also appear in 

4QQ(g, W ,  G) = (91- G1)29:+ (92 - G2)'LZ: + { W -  W O  + g . U 
+ o~V . (g - G)}2  9 0 2 ,  (14) 

which is asymptotically independent of the frequency since 9 ot wl. The spectral- 
broadening function Qz occurs in the exponential in (1 I ) ,  and shows that the spectrum 
is a smooth, convex broad band decreasing monotonically on either side of the 
maximum, which occurs for direct transmission from the source a t  g = G, w = W* 

(see ultrasound in figure I n ) .  

2.3. Spike and side bands in the audible range 

For the reasons stated earlier (at the beginning of 3 2) ,  in order to  model the strong 
refraction in the upper audible range we must consider both the scattering by an 
irregular interface of random unsteady shape and the diffraction by the turbulence 
and evaluate the spectral directivity integrals without making asymptotic or other 
approximations. There are in general two contributions to  the attenuation factor Q: 

Q = a2(y - r)z + ~ W ( C , / C ) ~  k2b2 cosec 8, (15) 

in which the second term, which appears in (8) ,  is associated with diffraction by 
turbulence and the first term with scattering by interfacial irregularities of r.m.9. 
height a.  The general characteristic function for a shear layer is C = 0xp { - Q(  1 - E)} ,  
and may be expanded exactly in a power series in the autocorrelation coefficient (9), 

giving Q 2 

C(z , )  = exp ( - Q )  C (Qn/x 1 )  n (1 - ~ Z ? / L : ) ~  exp { - n(z , /LJ2}.  (16) 
n=O i=o 

The symmetry of the space-time dependence z ,  = ( t ,  z) in (16) shows that the spectral 
directivity can be expressed in the (exact) form 
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in which I, is an interference integral defined by 

L. M. B. C. Campos 

I,(g - G; L) = n-f (1 - 2z2/L2),exp {i(g - G) z - nz2/L2} dz 1:: 

where H2r(~~)  = exp (u2) (d2'/duZr) exp ( - u2) are the Hermite polynomials of order 2r. 
We note that each factor z in the non-exponential part of the integrand in (18) cor- 
responds to a differentiation a/a{i(g - G)}, so that the integral may be evaluated by 
applying (1 + 2P/a{(g - G )  L}2}" to a standard Gaussian-type integral. The latter is 
equal to L/nB exp ( -  u2) ,  where u = (g - G )  L/2nf, i.e. the first factor on the right of 
(l8), which should be multiplied by a polynomial of order 2n in u, viz. 

p2,(u) = exp(u2){1 +(2n)-1d2/du2}nexp( - u 2 ) .  

Formal use of the binomial theorem enables the result to be expressed in terms of 
Hermite polynomials H2'( u )  = exp (u2) ( ~ 2 ~ / ~ u 2 ' )  exp ( - u') with T = 1, . . . , n (Courant 
& Hilbert 1966, vol. 1 ,  p. 91)) giving the expression on the right of (18). 

The zero-order term in the expansion (16) reduces to exp ( - Q ) ,  and for this case 
(1) may be evaluated trivially in terms of delta functions, giving the first contribution 
to the audible spectral directivity, whose complete form is 

I(8, 9, w )  = Jo(8, $1 exp ( - &) - w * )  

This comprises (i) a tone at  the source frequency, whose directivity is equal to that 
of a plane interface, together with the attenuation factor (15) of a turbulent shear 
layer, and (ii) a series of refraction bands whose energy is spread continuously over a 
spectrum of frequencies w1 < w < w2 determined by the conditions Re (y ,  I?) (as for 
the diffraction by turbulence, $2.2) and which resemble (11) but with different 
amplitude and broadening functions A, and Q,. Since in general Qcc w2 and Rcc 0 2 ,  

in the low frequency limit only the unatfenuated tone remains [see $2.1, equation 
(7)], whereas in the opposite asymptotic limit of large w all the energy is drawn from 
the spike of the incident wave and distributed into a broad band of frequencies [see 
$2.2, equation (ll)]. Since C < 1 we haw 

y,, I@, 9, w )  < J O V ,  $), 

and in the audible range the energy received at  all frequencies in the refraction bands 
is a fraction of that which is drawn from the spike { 1 - exp ( - Q ) }  Jo. This is a particular 
case of the general property (part 1, $ 4.3) of a turbulent and/or irregular shear layer 
transmitting in each direction less energy over all frequencies than would a plane 
interface devoid of turbulence placed between the same media. This statement 
applies only to those directions, defined by real y ( G )  and r(G) with 

G = (w /co)  (cos 8, sin Bsin $), 

into which a plane interface can radiate; a turbulent and/or irregular shear layer 
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satisfies similar conditions, i.e. real y(g)  and I'(g), but in terms of each incident wave 
component, and thus can also radiate into the 'zone of silence' of a plane interface. 

The audible broadening function Qn consists of analogous terms in the time delay 
z,, and longitudinal (2,) and transverse ( z2 )  separations, and may be expressed as a 
sum of squares of deviation functions: 

u(i) = - {{w-wo-q, U+av(g,-Gi)}L,, (g,-Qi)Li, (92-G2)L2}/2n.fU. ( 2 0 b )  

Since the broadening function appears as an exponential of negative argument in 
(19), the width of the spectrum scales inversely on (277)3 times the square of the re- 
fraction length per wavelength or refraction time per wave period, i.e. the spectrum 
is broader the more significant are the effects of scattering and diffraction. The 
audible amplitude function is given by 

n 

i = O  
An(g, G) = (KISI/Ay12 Qnexp ( - Q) II Li Bn(U$)), W a )  

n 

r=O 
Bn(u) = n-4 2 { (2n)r (n - r ) ! r ! } -1H2r(u) .  

Noting expression (15) for the attenuation factor, it  is seen that the fraction of the 
energy received in each direction which is contained in the nth-order band scales on 
the nth power of the product of the square of the thickness of the shear layer and the 
r.m.s. height of irregularities measured on the scale of a wavelength, i.e. the intensity 
of the broad bands is greater relative to the spike the thicker and more irregular the 
shear layer is. The breadth and the amplitude of the spectral bands both depend on 
the deviation functions, which are defined by ( 2 0 b ) ,  and vanish only for the com- 
ponent of the incident field that is transmitted without deflexion (G = 8) and with 
unchanged frequency (w = w * ) ,  i.e. the component which corresponds to the spike. 
The formation of the bands is thus described by u $1 0 and their shape depends on 
the side-band amplitude functions B,(u). The latter would be identically equal to 
unity (B, = 1 )  for an 'autocorrelation coefficient ' of the form 

2 

i = O  
E*(zJ = n exp { - (Zi/Li)2>, 

corresponding to a convex 'hump ' shaped band. The expression (21 b ) ,  which involves 
Hermite polynomials H2r( v ) ,  is determined by the autocorrelation coefficient (9), which 
becomes negative beyond certain separations, this in turn having been observed 
experimentally and Eeing associated with the conservation of the volume occupied 
by the jet (part 1,  5 4 . 2 ) .  The first-order amplitude A, = O(u2), accordingly there is a 
dip at  u = 0,  i.e. near the spike; the bands of higher order (n > 1) have terms O(1) 
and partially fill the aforesaid dip. Since the bands must ultimately decay because of 
the exponential term in (19), the spectrum will exhibit side maxima, i.e. appear as a 
spike flanked by two side bands (see audible range in figure 1 ( b ) .  

The main theoretically predicted features of spectra both in the low and high 
frequency limits and in the audible range have been sketched in figure 1 (a) ,  and may 
be summarized as follows: (i) scattering of a tone of low frequency incident upon an 
interface with a steady undulat,ing shape gives rise to  a transmitted tone at  the 
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fundamental frequency which is flanked by a series of weaker tones (convection 
harmonics) if the undulations are convected relative to  the source; (ii) diffraction of a 
high frequency tone by a thick layer of turbulence results in all the incident energy 
being spread over a continuous, convex transmitted broad band with maximum at 
the source frequency; (iii) a tone of frequency within the audible range incident upon 
a shear layer with an unsteady irregular shape and containing distributed turbulence 
is transmitted as an attenuated spike at  the fundamental frequency, some of the 
remaining energy being transferred into side bands, which feature maxima, form a 
dip about the spike and decay smoothly outwards. 

3. The description of a simple shear layer 
The techniques used to evaluate the refraction integrals exactly or to obtain more 

accurate approximations might be of some interest in other branches of wave theory, 
and are thus described starting from a slightly more general mathematical form. The 
broad-band and side-band integrals that result can be evaluated explicitly in the case 
of a simple layer that nevertheless retains all the features essentially associated with 
the phenomenon of spectral broadening. The underlying picture of an array of re- 
radiating elements, each responsible for a line in the spectrum, shows how the complete 
sound field may be constructed via multinomial expansions of Hermite polynomials 
in the scattering-diffraction series. 

3.1. Evaluation of the refraction integrals 
The integral (18) is a special case, with v = g  - G and p(z/L)  = 1 - 2z2/L2, of the nth 
term of a power-series expansion in p(z/L)  of the general refraction (diffraction or 
scattering) integral 

exp{ivz-p[i -p(z/L)exp ( - ~ 2 / L 2 ) ] ) d z  (22 )  

featuring a phase v and attenuation p. There is an effect of interference exp (pE) ,  
where E denotes the autocorrelation coefficient taken in the general form (part 1, 
0 4 .2)  E(z/L)  = p(z /L)  exp ( - z2/L2), in which the exponential shows that the cor- 
relation becomes negligible for separations larger than the refraction scale (z  > L )  
and the polynomial factor p(z /L )  can be used to specify mean, symmetry, skewness 
or other properties. To evaluate (22 )  the constant attenuation exp ( -p )  may be taken 
out of the integrand and the exponential expanded in powers of E(z/L) ,  the zero- 
order term giving a delta function 6(v) .  Each higher-order term appears as an integral 
involving { E ( z / L ) } ~  with n 2 1, and can be reduced to  a Gaussian integral, of expo- 
nential argument ivz - nz2/L2, if w0 note that each factor z within the integrand is 
equivalent to a/a(iv) ,  e.g. p(z/L)  leads to p{a/a(ivL)). Thus we obtain the scattering- 
diffraction series 

J ( v ,  L , p )  = exp ( -p )  2n6(v) +Lnt C. <Pnexp ( -  u2) , u = vL/2n), ( 2 3 a )  I m 

( n = l  n. 
which introduces the side-band polynomials P, defined by 
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which in turn can be expressed via a multinomial expansion in terms of Hermite 
(1864) polynomials, which are defined (Courant & Hilbert 1966, p. 91) by ( 2 3 ~ ) ,  with 
r = 1, . . ., nm, where m is the degree of p ( z / L ) .  The solution (23a) may be interpreted 
as an attenuated tone and a series of interference bands; noting that the exponential 
dominates the polynomial, IP,exp ( - u 2 ) ]  < b say, the series cannot exceed 

d b  (exp (p) - 11, 

and therefore is absolutely and uniformly convergent. If the bound b satisfies b < 2n4 
the interference bands contain, a t  most, energy 27r( 1 - exp ( -p)) ,  which is refractfed 
from the incident tone; otherwise, if b > 2713 the sum of the series could exceed the 
attenuation of the tone, in which case energy would have to be drawn from the 
refracting medium into the spectral bands. 

The refraction series (23a) can be approximated by the first term for weak diffraction 
(Rayleigh 1915) with an error O(p2),or summed to any desired accuracy (Beckmann & 
Spizzichino 1963); for strong scattering p 9 1 ,  however, and convergence is slow (viz. 
no faster than the series for expp), requiring the summation of a t  least N N 2p terms 
in order to give an acceptable accuracy. A convenient asymptotic estimate of (22) 
for p -+ co and when the polynomial p consists even powers only, i.e. 

P(z /L)  = p0  - P ~ ( Z / L ) ~  + o({z/Ll4), 

~ V Z  -p(po +p,) + 0 ( ~ 4 / ~ 4 ) ,  

J ( v , L , p )  = L{n/q}4exp{ -p(l -pO)}exp{- ~ ~ L ~ / 4 q } + o ( L ~ q - ~ ) ,  

involves a Gaussian integral for which the argument of the exponential is 

and gives 

where q = p(po +p2) and the standard approximation (O(q--l); see Jeffreys & Jeffreys 
1946, p. 507) is improved to O(q-2), or compared with the main term, improved from 
O(q-4) to O(q-4). This is a particular case of the asymptotic evaluation of integrals in 
which the amplitude is harmonic and the phase is stationary with next power 2s (s > l ) ,  
i.e. of the form 

(24) 

H ( v ,  L, p)  = 1' O0 exp {ivy -py2  + O(y2")} dy.  (25) 
--co 

This is essentially a Gaussian integral, equal to {7r/p}3 exp ( - u2) with u = v/2p4, with 
a correction O(y2") = O({a/a( i~)}~~)  = 0({(4p)-la2/8u2).): 

H(v ,  L,p)  = {./p}texp ( - v2/4p) + O(p-"). (26) 

This proves (24), for which s = 2 (and p = q/L2), and also the statement made in 
0 2.2 concerning the O(LZ4) accuracy of the asymptotic estimate (1  I ) ,  where p = LZ-2; 
all of the results ( l l ) ,  (24) and (26) represent smooth, convex broad bands. Our con- 
clusions on the mathematical theory of refraction can be summarized in three brief 
statements: (i) the general refraction integral (22) can be evaluated exactly as a spike 
plus a side-band series (23a), using also ( 2 3 h ) ;  (ii) the stationary-phase refraction 
integral (25) is given asymptotically for large attenuation by (26); (iii) if (ii) is applied 
to (22) withp an even polynomial the asymptotic estimate (24) follows. 

These methods reduce the scattering or diffraction problem to the evaluation of 
spectral broad bands (1  1 )  or side bands (19), i.e. to multi-dimensional integrals over 
finite spectra. These integrals may be computed by means of a Monte Carlo method 



764 L. M .  B. C .  Campos 

(Hammersley & Handscomb 1960) which expresses them as the area of the wave- 
vector surface of integration D multiplied by the arithmetic mean of the integrand 
at  N points taken randomly in D: 

n 
1: {lD//n) C h,exp(-Q,) 1: ( ~ ~ i / N }  5 hqexp(-Qq)+O(n-t). (27a-c) 

The domain D is defined by the condition that y and F be real, and depends on g; 
it  may be replaced by a fixed covering region 3 U D ,  the integrand being set to  
zero for points in n - D (cf. Howe 1976). In  the latter case we should need N > n points 
from a statistically uniform distribution, so that N/IDI = n/l DJ ,  in order to obtain n 
points in D, the latter alone determining the accuracy of the calculation. The broad- 
band and side-band integrals for the shear layer appear as products of three in- 
dependent one-dimensional integrals, each with an integrand involving a term of 
the form (Lighthill 1958, p. 17) 

q = o  q = o  

lim (m/n)& L exp { - (g - G)2 L2/4n} = 2n8(g - G ) .  (28) 
L + W  

Thus, if one refraction scale is infinite, i.e. the medium is independent of time or 
uniform in some direction, the delta function in the expression (28) allows the corres- 
ponding integral with respect to g to be evaluated trivially. 

3.2. An array of re-radiating elements 

Consider a simple shear layer defined to be statistically independent of time and 
uniform in the direction (x2)  transverse to the mean flow, so that Lo, L, -+ 00, though 
longitudinal irregularities and turbulent perturbations remain with L = L, < 00. 

Introduction of the former conditions into (20) and (21) gives, by use of (28), 

w - wo - 91 u + “V(91- GI)) w 2  - G2), 

which allows the integration with respect to g in (19) to be performed trivially, if 
0 + (8w/8gl)  = a V - U = coMr, where M, = aM -Mo. Thus spectral broadening occurs 
provided that the interface convects relative to the source (M, + 0 ) ,  and the condition 
w - a VG, = wo - (a V - U )  g, can be written in the form 

w(i -aMcose) = wo{(i -aiwcose’)/(i -ivocose’)}, 

where 8‘ is the local transmission angle (between the wave vector (g, I?) and the shear- 
layer mean plane xg = 0, i.e. tan8’ = r/g). The received frequency w ,  normalized 
with regard to w * ,  that of the source, is given by 

and is a combination of Doppler factors associated with the source motion M,, the 
shear-layer convection a M ,  the local transmission angle 8’ and the observation angle 
8 in the far field. Expression (29) shows that each frequency of the received spectrum 
is emitted by a local radiating element which may be identified by the angle of trans- 
mission .towards the observer #’. The element radiating along the line 8 = #‘ from 
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observer to source transmits the original tone w = o*, while forward elements (8’ < 8) 
re-radiate at  lower frequencies w < w* and rearward ones (8’ > 8) at  higher frequencies 
w > w * .  This assumes that the Mach number of convection of the shear layer is 
larger than the source Mach number (aM > M,); in the opposite case the frequency 
shifts would be interchanged between forward and rearward elements, leaving only 
the element along the line from the observer to the source to transmit at  the (un- 
changed) fundamental frequency. 

The locally incident (9, y )  and transmitted (9, r) wavenumbers in the horizontal 
(q) and vertical (x3) directions are given by 

(g,y, r, k )  = k,( i -No cos {COS 8’) sin 8‘) $(el), x(O’ ) } ,  (30a)  

x(e’) = {cog2 8’ + [@(r(ey}*, @(e’) = {(C,/cy (1 - M cos 8’12 - cost e y ,  (3ob, C) 

in which k, = w,/c, and k = {g2 + y2}3 is the locally incident wavenumber. The hori- 
zontal wavenumber g is conserved across every re-radiating element, but the vertical 
wavenumber is continuous ( y  = r) only across the element defined by sin 8, = $(6,), 
which transmits the incident wave without deflexion : 

e, = cos-qi 5 +,)/M}. (31)  

If the jet and the ambient medium have the same speed of sound (c = c,) the non- 
deflecting element lies on the vertical from the observer, 8, = in; it exists provided 
that 1 + M  2 c /co  2 I - M and lies in the forward arc if c > c, and in the rear arc if 
c < c,, the displacement away from the vertical being smaller for higher Mach numbers. 
In  order for undeflected transmission to occur $(8,) must be real, and this condition, 
in the general form Re{@(O’)} + 0,  specifies the wave modes propagating from the jet 
into the ambient medium. The zeros of ( 3 0 ~ ) )  which are given by $(8,) = 0,  viz. 

6, = sec-l ( M  & c/co), (32 )  

define the angles a t  which total internal reflexion within the jet first occurs, and 
where the zones of silence begin; the latter are 8 < 8, in the rear arc and 8 > n - 8- 
in the forward arc. Rear and forward zones of silence occur respectively for jet Mach 
numbers M > 1 T c/co, i.e. a rear-arc zone of silence exists whenever the speed of 
sound in the jet is higher than that in the ambient medium. If a zone of silence exists in 
the forward arc then a larger one must be present in the rear arc, e.g. for identical 
media (c = c,) the forward silent arc starts a t  M = 2, when the rear zone of silence 
occupies a 70.5” sector. 

Since an incident beam tends to be sharpened when transmitted to the rear arc 
and to fan out in the forward arc, the field should be stronger in the former region. 
This statement is quantified by the transmission factor, which specifies the amplitude 
change associated with scat’tering by an interface, and is given by IT I = 2/( 1 + a) ,  
where 1 +a = A in ( 2 d ) .  Thus 

a(e’) = (pc/po G o )  {( i - M cos e’)/(i - M, cos e‘)} {sin e’/$(e‘)} (33)  

shows that the non-deflecting element between a jet and an ambient medium con- 
sisting of the same substance preserves the magnitude of the field (a = 1 for 6’ = 8. 
and c = c,, p = p,). For 8’ = in we have in general T = 2p,c,/(pc+p, c,), viz., for 
perfect gases with the same molecular structure po C: = pc2, we have T = 2c/ (c  + c,,), 
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which shows that the amplitude of the sound field is locally reduced if co > c and 
increased if c > co. The transmission factor modifies at each re-radiating element the 
amplitude of the wave emitted by the source, whose multipolar factor is given by 
PC), 9%. 

so(e’) = 1, s,(e’) = -d$(e’), s2(e’) = dtzy{$(e‘)y +COs2e‘}, ( 3 4 4  

where -4 = (1 -Mo cosO’)-l, respectively, for (cf. Lighthill 1952, 1962) an omni- 
directional source (monopole So), an applied ‘force’ (vertical dipole 8,) and a (com- 
pressive) turbulent stress (quadrupole S2). Formulae (30)-(34) apply in terms of 8 
to a plane interface and are also valid locally (in terms of 8’) for an irregular and 
unsteady interface whose radius of curvature is (at all times) large on the wavelength 
scale. The latter condition is known as the Kirchhoff scattering approximation, and is 
expressed for random interfacial irregularities of r.m.s. height a and correlation 
length L by 

( l ~ L / 8 n ) ~  { 1 + ( L / ~ U ) ~ }  B 1, I tan 8, I = n2ha/L, 

where 8, specifies the local r.m.s. slope. For a plane interface waves can be transmitted 
at  angles 8 satisfying 8, < 8 < n-e-, whereas for an irregular interface we exclude 
(when computing the spectra whose plots are to be shown subsequently, besides 
8’ < 8+ and 8’ > n-e-) waves radiated a t  grazing angles, i.0. below the mean slope 
of the interface (8’ < I9* or 8’ > n - 8*),  which are re-scattered in other directions and 
constitute a diffuse field. The latter is weak if the interfacial irregularities are shallow 
(L2/4a2 B l), in which case Kirchhoff’s scattering theory applies to wavelengths 
smaller than or of the order of magnitude of the correlation length ( A  5 L). 

3.3. Scattering-diffraction series expansion 

The degenerate cas0 of the array of local radiating elements is furnished by a plane 
interface which transmits sound at  the same frequency as the source with directivity 
(5), given in the fly-over plane q5 = 0 by 

(36) Jo(8) = (8n2p0 c0)-l {sin2 8 / (  1 - Mo cos S)} { S ( 8 ) / A  (8) $ L ( B ) } ~ .  

{sce))v{s~2p0 c0( 1 - M, cos e)}, 
For identical media a t  rest $(8) = sin 8, A (8) = 1 and (36) simplifies to 

but *he amplitude is modified by propagation within the jet and transmission to  the 
ambient medium, being singular only on the Mach cone cos 8 = l / M o  in the supersonic 
case (the cone degenerating into a plane in the sonic case). Even if we regard each local 
re-radiating element of the model array as being plane, it will emit sound at  its own 
characteristic frequency, which is given by (29), replacing the directivity Jo(e) of a 
plane interface by a simple layer function defined as 

which is related to the former [see (36)l by J*(8, 19) = J0(8)/(2n9c0Mr). Here the factor 
2n9 implies that we are considering one finite refraction scale (parallel to the mean 
flow in the shear layer) to account for both the scattering by longitudinal irregularities 
of the interface and diffraction by turbulence with velocity perturbations lying in the 
plane Q, = 0 (which is specified by the velocity of the jet and the observer position in 
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the ambient medium), and accordingly the factor co Mr is associated with the occurrence 
of spectra.1 broadening (0 3.2) .  

Thus one property absent in the refraction by a plane interface but relevant to our 
simple shear layer model is spectral broadening, which is expressed by the function 
R,. This is identically zero in the former case (R,(O, 0) = 0 )  and from ( 2 0 a )  is given 
at each re-radiating element by 

for an irregular and/or turbulent shear layer. In  the latter case the spectral broadening 
function R, vanishes only for the radiating element on the line from observer to 
source (6 = O ’ ) ,  which is the one transmitting the original tone; higher and lower 
frequencies are affected by the term exp ( -  Q,) that limits the energy contained in 
the outer regions of the spectrum. The deviation function un(B,  O ‘ ) ,  which is given by 
( 3 8 ) ,  specifies (besides a,), by means of (21 b ) ,  the side-band amplitude function: 

n 

r=O 
B,(B,e’) = n-4 C { (2n)r  (n - r ) !  r!}-l H2r{~,(6, O ’ ) } ,  (39 )  

in which the Hermite polynomials H2r may be calculated from the definition (23c) or 
the recurrence formula H,+,(u) = 2uH,(u) - 2nH,-,(u) (Courant & Hilbert 1966, p. 92) ,  
e.g. Ho = 1, H2 = 4u2 - 2 and H4 = 16u4 - 48u2 + 12. In the first-order refraction 
B, = 0: = 2R1, and this implies the appearance of a dip in the spectral broad band, 
corresponding to transmitted sound with u1 = 0 = R,, i.e. centred at  the spike, 
which is thus flanked by two side bands. Higher-order terms, e.g. B, = $ - +u2( 1 - u2)  
with v = u,, partially fill in the dip and augment the side bands; the subsequent 
terms R, = O( l / n )  correspond to wider convex bands, spreading outwards, so that the 
spectrum tends to fall off linearly or with a slighbly concave shape (on a logarithmic 
scale) from the side-band maxima. 

Another property of the simple shear layer is attenuation of sound, which is 
expressed from ( 15) by means of the attenuation factor 

&(O’) = d 2 { k !  a“$(&) -sin 0’>2 + P ~ M ~ { x ( O ’ ) } ~  b2 cosec 0’}, (40) 

which consists of two terms associated with (i) scattering by interfacial irregularities 
of r.m.s. height a, which reduces re-radiation from each element the further it lies 
from the non-deflecting element given by $(OJ = sinO, [see (31)l  and which defines 
the only angle for which energy is conserved, and (ii) diffraction by a region of tur- 
bulence in the shear layer of effective thickness b that involves attenuation at all 
re-radiating elements (e.g. Q, = D2M2b2 cosec 0, a t  the non-deflecting element), the 
degree of attenuation increasing as the angle of incidence approaches grazing directions, 
for which the ray paths are longest. The effects of attenuation are included explicitly 
in the expression ( 1 9 )  for the audible spectral directivity, which in the case of re- 
frackion by a simple shear layer takes the form 

I (e ,  e’) = J(o ,o’ )  exp { - & ( O f ) }  ( 2 7 ~ 4 ~ ~ ~ ~  s(e - el) 
m 

The first two factors on the right are respectively the simple layer function (37) and 
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the directional attenuation exponential specified by (40), thus the transmitted sound 
field is made up of two components: (i) a tone refracted by the re-radiating element 
in the line of sight from the observer to  the source; (ii) a scattering-diffraction series 
expansion, consisting of interference bands defined by (38) and (39) of orders n 2 1 ,  
re-radiated by all other (offset) elements of the model array. 

I n  order t o  obtain the spectrum received in a given observation direction 8, we may 
scan all re-radiating elements lying in the angular range 

8, = SUP (0, e,, 8,) < 8’ < inf(n - 8*, T - 8-, T )  = 8, 

[see (33) and ( 3 5 b ) J ,  their emission frequency being determined from (4b) and (29) 
by means of the expression w(8,  8 ’ )  = w * ( 6 )  w(8,O’) in the spectral band 

w1 = w(e,  8,) < (d < w(e, 8,) = w,. 

The corresponding received energy (viz. the audible spectral directivity) I(8,8’) is 
given by (41). If the observer is located in the rear itre (8 < Jn) the spectrum extends 
more into the frequencies higher than that of tho source (w, > o > w * ) ,  corresponding 
t o  8 < 8’ < 8,, and less into the lower frequencies ( w ,  < w < w * ) ,  for which 8 > 8’ > 8,, 
i.e. w2 - w* > w* - w,;  conversely, if the observer is located in the forward arc the 
spectral bands are biased towards the low frequencies. The series in (41) specifying 
the side bands must be summed to an accuracy of 0.3 yo, in order to  correspond 
t o  the minimum level of distortion which is discernible t o  the human ear (15dB), 
which perceives sound nearly logarithmically. Thus we represent the spectral direc- 
tivity on a decibel scale (in figures 2-5),  normalized to  fhe maximum of (the higher of) 
the side bands Inz(8), taken as the 15 dB reference for audible distortion: 

II(8,6’) 5 15 + 10 log,, ( I (8 ,  @)/I,(@}. (42a) 

The directivity is defined as the energy received over all frequencies in a given direction 
and is normalized t o  the maximum energy J, in the tone of a plane interface (361, 
which an irregular and/or turbulent shear layer cannot exceed ($ 2.3; also part I ,  
$4.3) .  Thus J, is taken as the reference level for 

III(6) = 40 + lOlog,, ki1 I(6,6’) d0’) , 

a dynaniic (or total directivity) range of 40dB being sufficient for the assessment of 
the audible disturbance of aircraft noise. 

Some of the main effects of refraction of sound by a turbulent and irregular shear 
layer are summarized dia.grsmmatically in figure 1 (b ) :  a source convected within the 
jet emits monochromatic radiation to  all re-radiating elements of the array which 
models a simple shear layer. Each re-radiating element transmits the incident tone 
in one direction (calculated as for a plane interface) as an attenuated spike, provided 
that the angle of total internal reflexion into the jet is not exceeded; some of the energy 
which is attenuated from the spike is re-emitted in all other directions, contributing 
an interval t o  the frequency band of the spectrum received a t  each off-set observer 
direction, except for grazing directions, for which multiple scattering occurs. For an 
observer lying on the vertical to the jet axis the model is symmetric except for the 
mean flow velocity, and thus the received spectrum is approximately symmetric 
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about the source frequency for low speed jets; for an observer located in the forward 
arc the radiation coming from the forward elements predominates and the spectrum 
is biased towards the low frequencies (and conversely in the rear arc). 

4. Comparison of prediction and observation 
In  order to  compare the present theory of spectral broadening with noise measure- 

ments of jets it is necessary t o  know fairly precisely the location and properties of 
sound sources, so that scattering and diffraction effects can be isolated; in this respect 
the experiments of Candel et al. (1 975) appear to  be the most appropriate collection 
of measurements concerning the transmission of sound through shear layers. When 
applying the theory to  the prediction of the spectra at various angles t o  the axis of 
high speed jets we shall consider a tone of frequency 8-10 kHz typical of the order of 
magnitude of the rotation speeds of turbines (and compressors) of modern jet engines. 
If the agreement between theory and experiment which is exhibited a t  low jet speeds 
(figures 3 and 4 )  were t o  be maintained for high speed jets, then the prediction (figure 
5) that  a tone can be considerably attenuated, and its energy spread over a spectral 
band of several kilohertz, as a result of the scattering by irregularities and diffraction 
by turbulence of the shear layer (even if of small scale) gives some hope with regard 
to the reduction of the noise disturbance caused by sources located in the exhausts 
of jet engines. 

4.1. Experiments with sources in an open 7~ind  tunnel 

The spectra of test sources emitting monochromatic radiation which is refracted by 
turbulent and irregular shear layers were measured in two series of experiments 
performed by Candel et al .  I n  the first (Candel, Julienne & Julliand 1975) the source 
was located on one side of a jet exhausting from a rectangular nozzle, the size of which 
ranged from 30 x 190 mm to 190 x 90mm, placed within a wind tunnel, in order to  
simulate the shielding of noise by a double shear layer. The second series, by Candel, 
Gu6del & Julienne (1975), concerned a source located in the interior of an axisym- 
metric jet exhausting from a circular nozzle of diameter 3000mm into an anechoic 
chamber, for the ultimate purpose of developing methods of transposition of noise 
measurements taken in the exterior of a jet to  its interior. Although the present theory 
applies t o  the former case of a double shear layer (part 1 ,  Q 3.2), the latter series of 
experiments is more representative of the transmission of noise from the interior of a 
jet, in both cases cold air a t  low speed. Thus we adopt the collection of measurements 
in Candel, GuBdel & Julienne (1975), some of which (namely their figures 2, 4, 6 and 
25a-c) are reproduced in our figure 3 (a ) ,  for comparison with computations based on 
the present theory. The reference case is a low speed cold air jet containing a high 
frequency source: 

V = 60m/s, c/cO = 1 = po/p, f = 20kHz, (43a-c) 

the source being located at a station X ,  = 500mm downstream of the nozzle (see 
their figure 4,  reproduced in our figure 3a) .  Conditions (43a, c )  were varied to  consider, 
in all, three low jet speeds V = 20, 40 and 60m/s, six high but audible frequencies 
f = 4, 6, 8, 10, 15 and 20 kHz and shear-layer scales a t  two stations X ,  = 500 and 
1950mm. 

26 F L M  89 
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10 I- 1 

I /" 

w (kHz) 

w (Hz) 

( b  ) 
FIGURE 2. Modelling by computer program. (a )  High-speed directional spectra; M = 0.8, 
L = 200mm, f = 10 kHz, d = 0.710, 8 = 0.934, 6 = 35mm, a = 20mm. ( b )  Formation of a low 
speed spectrum. 
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40 r + 

w (Hz) 
( b )  

FIGURE 3. Influence of jet velocity. (a) Figures 2, 3, 6 and 25 from Candel, Gu6del & Julienne 
(1975). (a) Plot of corresponding simulation; 0 = go", M = 0.176, L = 135mm, f = 20kH, 
d = 1.000,c = 1.000, b = 55 111111, a = 55 111111, monopole source. 

The source of sound used in the experiments was a compression chamber enclosed 
in an aerodynamically shaped profile and radiating through a small lateral hole. The 
directivity pattern measured in the absence of flow is fairly complex, but this is of 
little consequence to the comparison of spectra, which were all measured in the same 
direction 6 = 90" (perpendicular to the jet axis). The directivity pattern of emission 
will have no effect on the computed spectra if the source is assumed to be a monopole. 
Judging by their figure 6 (our figure 3a), the thickness of the shear layer at X ,  = 500 mm 
is about 110 mm, suggesting an r.m.8. height of irregularities of 55 mm, i.e. we take 

S = 1, a = 55mm = b,  L = 135mm, ( 4 4 m )  

in which L is the refraction scale. Our point of view is that a sample experimental 
spectrum could be used to determine the values of the parameters a, b and L that 
give the best fit with one computed spectrum; this is an example of the use of the 
knowledge of the distortion of a test tone to estimate the properties of the medium of 
propagation (part 1, $1.3) .  The values (44a;-c) thus chosen should, of course, be 
retained for the computation of every spectrum measured at  the same station, viz. 
in the present case eight distinct spectra. The first comparison of experimental 
measurements (their figure 25b,  in our figure 3a) and the corresponding theoretical 
computation (figure 3b) concerns the effects of increasing the jet velocity. These are 
apparent as (i) a proportional increase in the width of the central dip between the 
maxima of the side bands, (ii) higher side-band maxima, implying that a larger fraction 
of the energy of the incident tone is transmitted in the side bands, and (iii) broadening 
of the range of frequencies occupied by the spectrum. The frequency and level of the 
side maxima, and the breadth of the spectrum are given in table 1,  in which computed 
results are compared with the values which can be discerned from the small graphs 
in Candel, Gubdel& Julienne (1975), the latter being given in parentheses. 
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40 r - f = 4 k H z  
I I:: 

x / /  I I I \ \ h  
-400 -300 -200 -100 0 100 200 300 400 

w (Hz) 
( b )  

FIGURE 4. Effect of source frequency; 0 = go", M = 0.176, d = 1.000, c = 1.000, monopole source. 
(a )  Developed turbulence downstream; L = 300mm, b = 217mm, a = llOmm. ( b )  Thin shear 
layer near a nozzle; L = 135mm, b = 55mm, a = 55mm. 

Jet velocity (i) Dip (ii) Maximum (iii) Side-band 
(m/s) width (Hz) level (dB) breadth (Hz) 

20 28 (29) 11.3 (10.0) 67 (77)  
40 58 (58) 13.8 (13.4) 162 (184) 
60 86 (75) 15.0 (15.0) 313 (315) 

TABLE 1 
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Source frequency Maximum level Side-band breadth 
(=) (dB) (a) 

6 8.2 (4.4) 221 (171) 
8 9.4 (7.7) 225 (232) 
10 10.6 (10.0) 233 (232) 
16 13.1 (13.6) 274 (280) 
20 16.0 (15.0) 313 (315) 

TABLE 2 

Source 
frequency 

(kHz) 
4 
6 
8 
10 
15 

Maximum of 
side band 
(a) 

16.8 (16.3) 
19.4 (19.0) 
20.8 (19.8) 
21.3 (20.7) 
21.1 (21.2) 

Breadth of 
side band Spike level 

153 (130) 38.3 (38.0) 
181 (197) 37.3 (36.0) 
213 (216) 36.0 (35.6) 
249 (238) 34.3 (34.0) 
357 (350) 28.7 (29.0) 

(Hz) (dB1 

TABLE 3 

According to the experimental results in figure 25 (a )  of Candel, Guddel & Julienne 
(in our figure 3a), which were obtained at the same station as before, and the corres- 
ponding theoretical prediction of figure 4 ( b ) ,  increasing the frequency of the source 
increases the energy contained in the side bands, which exhibit higher maxima and also 
become broader. A detailed comparison gives the results presented in table 2. 

The eight distinct spectra in tables 1 and 2 are for the same station X ,  = 500 mm, 
fairly close to the nozzle exit (axial distance/nozzle diameter = Xo/A = B), where the 
shear layer is relatively thin [see (44)] and the attenuation effects are barely noticeable 
(i.e. < 1 dB). According to  figure 5,  the shear-layer thickness increases approximately 
linearly with the axial co-ordinate downstream (at least for distances of the order of a 
jet diameter), and a t  X, = 1950mm (or X,/A = 0.65) the (effective) thickness of the 
turbulent shear layer should be taken as b = 3-95 x 55 mm. The irregularities may 
increase more slowly in (r.m.s.) height and the turbulence intensity may be expected 
to  become somewhat weaker in a broader layer, and the refraction scale larger. 
Accordingly at this station we bake 

These values are used in the computation of the theoretical prediction in figure 4a, 
which corresponds to the experimental measurements in figure 25(c) of Candel, 
Gu&del& Julienne (in our figure 3 a) ,  showing that the central dip narrows considerably 
(to N 32 Hz) but again the side bands are broader and higher as the source frequency 
increases; see tabIe 3. If the spike attains 38.3 dB for a 4 kHz source tone, then a 
comparison with the energy transmitted at  other source frequencies (namely 6, 8, 10 
and 15 kHz) gives the spike levels indicated in table 3, showing the increase in attenua- 
tion of tones at higher frequencies caused by a thick and sinuous shear layer. 

a = llOmm, L = 300mm, b = 217mm. (45-1 
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Je t  Source frequency (kHz) 
Station velocity (- A \ 

20 * 
40 
60 

0.66 60 

XOlD ( m l s )  4 6 8 10 15 20 

t 

- - - - - 
- - - - 6 

6 
6 

* 
* * * * 

* * * * * - 
- 

TABLE 4 

4.2. Directional spectra for a high speed jet 

A monochromatic source of nominal fundamental frequency w* actually w i t s  over 
a range of frequencies w* - E < w < w* + E, the width of which will be relatively small 
(2s < w * ) ,  thereby simulating a ‘tone’. The distribution of the energy emitted by the 
source a t  each frequency in the range (w* - E ,  w* + E) is given by some function F(w) ,  
and is received as the spike whose shape is essentially unchanged during transmission 
through the shear layer, apart from an overall attenuation exp ( - &) of the directivity 
relative to that (J,) of a plane interface. The total energy in the spike is given as the 
coefficient of the delta function on the right-hand side of (19), viz. 

e.g. for F ( w )  = f x (1  - I w - w* I /b)” the height of the spike is equal to f and is determined 
by f = g(p + 1)  J, e-Q. For the purpose of sketching the spike in the plots in figures 2-5 
we have taken p = 7 and E = Y n  (i.e. s/2n = *$ Hz), the values assumed being of no 
consequence to the relative levels of spikes, which depend only on the ratio of the 
respective plane-interface directivities and the difference of shear-layer attenuations, 
according to f,/f, = (JoJJo2) exp (Q2 - Q1). Typically in the transmitted field the spike 
is flanked by side bands, the formation of which is illustrated in figure 2(b) for the 
conditions (43) and (44) corresponding to  the reference case in the experiments of 
Candel, Gu6del & Julienne (1975). The first-order side band Il is a result of amplifica- 
tion by interference between adjoining radiating elements A,, dominated in the outer 
portions of the spectrum by the decay exp ( - Q,) associated with independent 
attenuation, which is more marked a t  shallow angles of incidence. The second-order 
term I, of the scattering-diffraction series expansion partially fills the dip centred at  
the spike, and also causes the side bands to extend further outwards, resulting in a 
nearly linear or slightly concave decay of the full spectrum I. A detailed comparison 
of the spectra obtained by the method of computation described above with those 
measured experimentally by Candel, Gu6del & Julienne (1975) and illustrated in 
figures 3 and 4 exhibits encouraging agreement in the 13 distinct cases listed in table 4. 
We have marked with a dagger the reference case, corresponding to the values of the 
parameters indicated in (43) and (44), and emphasize that so far we have been con- 
cerned with (a monopole source immersed in) cold air jets of low subsonic speed, for 
which comparable measurements are available. 
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The theory is also applicable at other values of the jet Mach number M ,  soarce 
frequency f (in Hz) and of the ratios c and d,  respectively, of the sound speeds and 
mass densities in the jet and in the ambient medium: 

M = v/co, c = c /co ,  d = PIPo, f = w0/271. (46a-d) 

These parameters may be adjusted to  characterize various conditions, such as those 
in which full-scale measurements with test sources might be difficult to  perform 
accurately, e.g. a high subsonic flow of a diatomic perfect gas (Landau & Lifshitz 

(47a-c) 

and which contains a high frequency compressive quadrupole source, modelling 
sound produced by a turbulent eddy behind a thin shear layer. We assume 

f = lOkHz, a = 20mm, b = 35mm, L = 200mm, ( 4 8 ~ - d )  

i.e. a fairly small value for the r.m.s. height a of irregularities, a slightly larger one 
for the thickness b of the turbulent region and a refraction scale L corresponding to 
turbulence of moderate intensity, in order to show that spectral broadening is sig- 
nificant for most high speed jets. The complete spectra and the first interference band 
(i.e. the term Il of order n = 1 in the scattering-diffraction series expansion) have been 
plotted in figure 2(a)  for conditions (46) and (47) for five directions spaced a t  30" 
(viz. at  angles 8 = 30°, 60", go", 120", 150" in the 'fly-over' plane # = 0). The spectrum 
of the sound received at  right angles to the jet is more asymmetrical than in figure 
2 (b) as a result of the high speed of the jet. 

The asymmetry of the spectra becomes more apparent away from the vertical (i.e. 
0 = 90") direction and, as predicted in 53.3, for an observer in the rear arc (8 < 90') 
the spectrum extends further into frequencies higher than that of the source, whereas 
for an observer in the forward arc (0 > 90") the spectrum is biased towards the lower 
frequencies. Therefore, when listing in table 5 below the maxima and breadth of the 
overall side bands (and also, in brackets, the corresponding magnitudes for the 
first-order side band), we write the values corresponding to frequencies lower and 
higher than that of the source before and after the stroke, respectively, for the left/ 
right spectral side bands. The first-order interference band is a poor approximation 
to the full side band for the spectrum a t  90") becomes a small contribution at  120", 
a,nd is negligible a t  150". Correspondingly, the calculation of the full side band to the 
specified accuracy of 15 dB below the maximum in each direction required 4-8 terms 
of the scattering-diffraction series a t  go", whereas 10-33 terms were necessary for the 
spectrum at 120". These two statements illustrate the property that the interference 
between neighbouring re-radiating elements modelling scattering and diffraction by 
the turbulent and irregular shear layer are more significant (i) for each observer 
direction, for frequencies distant from the source frequency, and (ii) in general, for 
grazing directions of observation. The spike is progressively attenuated as the observer 
moves away from %he vertical into the forward arc (e.g. at 120" ; t,he spike subsides 
into the broad band a t  150°), and is absent to the rear of 8, = 59.4") which is the 
angle of total internal reflexion calculated from (33) for a plane interface between 
media which are described by (47b). 
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Angle 
e 
30" 

60" 

90" 

120" 

150" 

t Level at spike. 

Overall (first-order) side band 
L 

I 1 Peak level 
Maxima (dB) Breadth (kHz) (dB) 

- - / -  - / -  
( - / - )  ( - / - )  
15*0/15.0 048/ 1.05 27.6t 

15*0/14.7 0*97/1.39 37.6t 

15*0/ - 1.37/1*60 18.4t 

15.0/ - 1-97/0- 16 13*5$ 

( - / - I  (0*39/0.62) 

(14-4/13*8) (0*65/0-62) 

( - / - )  (0.58/0+12) 

( - / - I  ( - - / - - I  

$ Level of band at source frequency (spike indiscernible). 

TABLE 5 

4.3. Application to a jet-engine exhaust 

The dynamical model of the shear layer features two characteristic velocity coefficients, 
viz. the mean eddy convection velocity aV and the turbulent perturbation velocity 
u = pVm, for which we have taken a t  low Mach numbers (Barratt et al. 1963) a _N 0.6 
and p E 0.15, values which remain approximately valid at  high jet speeds. The 
Kirchhoff scattering approximation (35a) may be expected to  be satisfied for high 
frequency sound (k2L2/4m2 9 1 )  incident upon an interface [see (35b)l with either 
shallow (L2/2n2a2 9 1 )  or moderately steep ( L  2: 297ra) irregularities, and the local 
turbulence (part 1,  Q 2 . 2 )  would remain effectively incompressible if (pMco/c)2 < 1,  
i.e. (since ,8 2: 0.15) for supersonic jets satisfying M 5 2c/co.  The present shear-layer 
model is expected to  apply to shock-free refraction by moderately supersonic flows; 
shock waves resemble interfaces in that they appear as surfaces of discontinuity of 
density (and sound speed). However, the pressure also changes across a shock wave, 
unlike an interface, and the discontinuity in the mean velocity is normal in the former 
and tangential in the latter cases. The system of shock cells in a supercritical jet 
lies behind the interface, the irregularities of which can also produce shocks, and either 
set of shock waves could interact with the turbulence adjoining the interface. We 
make the admittedly rather simplistic assumption that all localized scattering and 
distributed diffraction effects can be modelled by means of three possibly modified 
statistical scales of the shear layer, namely the (r.m.s.) height a of the interfacial 
irregularities, the (effective) thickness b of the region of turbulence and the (longi- 
tudinal) refraction length L. As a practical application, in order to have an idea of 
the significance of spectral broadening in the difficult but important case of Concorde 
at take-off, we assume the following shear-layer scales: 

a = 40,80 mm, L = 125 mm, b = 50,100 mm, (49-1 

the second set of values corresponding to  a shear layer of double thickness and ir- 
regularity, for which greater attenuation of noise emitted within the jet might be 
expected. 
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The exhaust gas of the (Rolls-Royce/SNECMA) Olympus (593D Mk. 612 twin-spool 
turbojet) engine which powers (the production series) Concorde is thermodynamically 
imperfect, and the hot, low density flow is supersonic compared with the atmospheric 
sound speed. The take-off, noise abatement and climb thrust ratings correspond to 
exhaust properties which differ in detail, but the following values are representative 
as orders of magnitude: 

M = 2.0, c = 1.8, d = 0.3, f = 8kHz. (50u-d) 

As an illustration we shall consider a vertical dipole source whose frequency we take 
to be 8 kHz, corresponding to  the rotation speed of the high pressure compressor- 
turbine assembly, and hence to the turbine tone associated with mechanically induced 
vibration. Although the turbine tone is emitted within the engine nacelle, it  can be 
modelled by a distribution of monopoles and dipoles in the nozzle exit plane; at  
supersonic flow velocities these sources can only radiate downstream, precluding any 
significant effect of scattering by the nozzle. The flow noise sources consist of dynamical 
and thermodynamic non-uniformities (e.g. turbulence and inhomogeneities, respec- 
tively), which are convected downstream in the exhaust jet, and their emission 
spectrum could make a significant contribution at the frequency of the flow pulsations 
produced by the turbine rotating a t  8 kHz. Turbulent quadrupole noise sources have 
been extensively studied since the pioneering research of Lighthill (1952, 1954)) 
therefore we shall illustrate the inhomogeneous dipole process of emission, which is 
associated with the presence of patchea of unburned gas, the scale and thence emission 
frequency of which are determined by the passage through the turbine. These blobs 
of gas generally have a chemical composition which is distinct from that of the sur- 
rounding fluid, and may also be at a different temperature, thus appearing as in- 
homogeneities in density that are subjected bo a displacement force (Campos 1978~)  
when convected downstream in the mean pressure gradient of the exhaust. 

Collections of theoretical data concerning the refraction of sound by jets have been 
presented by various authors (e.g. Howe 1974). Figure 5 reproduces our own spectra 
and directivity data, which consist of (i) two spectra in each of eleven directions 
spaced at intervals of 15" about the vertical (0 = go"), corresponding to Ghe two sets 
of scales in (49)) and (ii) the total directivities obtained by integrating these spectra 
along with that for a plane interface (solid line). For our simulation of Concorde at  
take-off conditions, the lower and upper limits of the frequency band and the decibel 
level of the spike are given in table 6 [in which the values in brackets correspond to 
the larger shear-layer scales, the second set of values in (48a, c ) ] .  The direction of 
undeflected transmission, predicted theoretically from (31), is 0, = 114.6", and this 
corresponds to the absence of attenuation associated with scattering by interfacial 
irregularities, i.e. the attenuation is due only to diffraction by turbulence. It appears 
from the spectra that the spike at 105' and 120" is rather higher than that at  the vertical 
(8 = go'), even though the source is a vertical dipole, showing the significance of the 
decreased attenuation at or near to  the direction of undeflected transmission; the 
attenuation associated with diffraction by turbulence increases monotonically away 
from t h e  vertical, thus the spike a t  120" is slightly lower than that at  105". No spike 
is received at 135" and 150" because the re-radiating element in the line of sight from 
the observer to  the source lies in a grazing direction (i.e. below the mean slope of the 
interface, which is given by (35b) as 8, = 54.9" or 125.1") and the energy of the spike 



Spectral broadening of sound by turbulent shear layers 779 

t 105" 

0 4 8 1 2  16 0 4 8 12 16 

w ( k H z )  w (kHz) 

0 30 60 90 120 150 180 

0 (deg) 

FIGURE 5.  Spectra and directivity data for simulation of Concorde noise a t  take-off. 
M = 2.000, L = 125mm, f = 8 kHz, d = 0.3000, c = 1.800, b = 50mm, a = 40mm, 
vertical dipole. 
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Angle 

30" 
45" 
60" 
75" 
90" 

1 0 5 O  
120" 
125O 
150" 

e 
Limits of the broad band (ItHz) 

Lower Higher 

- ( - )  
- ( - 1  

13.76 (13.92) 

r A > 

- 
- 

> 16.0 (>  16.0) 
8.00 (8.16) 14.89 (>  16.0) 
5-60 (5.58) 13.44 (1  1.04) 
4.32 (4.28) 10.24 (8.48) 
3.52 (3.51) 8.32 (6.88) 
3.04 (3.05) 7.20 (5.92) 
2.72  (2.88) 6.56 (5.44) 

t Spike. 

TABLE 6 

Peak level 
(dB) 

- ( - 1  
- ( - )  

15.0 (14.8) 
15.0 (13.3) 
18.lt (13.0) 
37-77 (14.8t) 
35.71- (12.6) 
t5.0 (11.6) 
15.0 (12.1) 

is re-scattered into other directions (forming a diffuse sound field which we have 
neglected). The angle of kotal internal reflexion for a plane interface [given by (33) 
for the conditions (5011 is 8, = 74.7' and no spike is transmitted in60 the directions 
further to the rear; the latter would form the 'zone of silence' of a plane interface, 
into which the turbulent and irregular shear layer [described by (49)] can effectively 
radiate a broad band (e.g. at 60"). The bands are biased Gowards high frequencies in 
the rear arc (0 < 90") and, conversely, towards low frequencies in the forward arc 
(0 > go"), a property which was predicted generally in 5 3.3, noted for the high speed 
directional spectra in figure 2 (a ) ,  and observed experimentally for low speed jets by 
Candel, Julienne & Julliand ( 1  975). Doubling the effective thickness of the turbulent 
region and the r.m.s. height of interfacial irregularities does not affect the bands as 
much as the spike, the latter being totally absorbed into the broad-band radiation 
in all directions except 105", where the spike was formerly most prominent and is 
now barely discernible. 

This attenuation effect can be appreciated in the directivity plot in figure 5 ,  or in 
table 7, which lists (i) the directivity for a plane interface devoid of turbulence, (ii) the 
directivity for a turbulent and irregular shear layer with the scales indicated first in 
(49a-c), (iii) the directivity for the shear layer with 'doubled scales' [second values in 
(49a,c)] and (iv) the attenuation given by (iii) in comparison w i ~ h  that in (ii). The 
degree of attenuation (iv) is small ( < 4 dB) for all directions in which the spectrum is 
essentially a broad band, and is significant ( >  12dB) where (e.g. at  105" and 120") 
a spike has been absorbed. The maximum of the directivity is thus shifted from the 
forward arc (105") to the rear arc (75", where it would be for a plane interface), and 
the peak level is reduced by 8-0 dB (in addition to the 10.6 dB reduction given by the 
present shear layer compared with a theoretical smoobh layer devoid of turbulence). 

These results lead to the following conclusions concerning the application of the 
phenomenon of spectral broadening to the reduction of the noise disturbance of 
modern jet-powered aircraft, such as Concorde: ( a )  if the noise spectrum (for the 
existing shear layer) consists of only a broad band devoid of spikes, increasing the 
degree of irregularity and/or the thickness of the shear layer is unlikely to provide a 
worthwhile degree of attenuation, and might actually have the opposike effect, by 



Spectral broadening of sound by turbulent shear layers 781 

Case ... (i) (ii) (iii) (iv) 
Angle Plane Present Doubled Variation 

e (dB) (dB) (dB) ( + d W  

30" 
45" 
60" 
75" 
90" 

105" 
120" 
135' 
150" 

t 
t 
t 

39.8$ 
39.0 
37.6 
35.3 
33.6 
31.2 

t 
t 

16.5 
21.6 
22.0 
29*2$ 
24.5 
12.0 
6.4 

t 
t 

21*2$ 
15.6 

19.3 
16.5 
12.1 
7.7 
3.2 

t 
t 
- 0.9 
- 0.4 
- 2.7 
- 12.7$ 
- 12.4 
- 4.3 
- 3.2 

t GOdB. $ Extrema (i.e. maximum of directivity or minimum variation). 

TABLE 7 

increasing the extent of the turbulent and inhomogeneous regions which can con- 
tribute to noise generation; ( b )  if the spectrum contains prominent and audibly 
objectionable spikes, in particular spikes emitted by mechanical sources located 
within the engine nacelle and/or radiated by flow sources convected in the exhaust 
jet, then a shear layer which is effectively thicker and more sinuous can smooth the 
spectrum, transferring energy from the spikes into the bands to  result in an overall 
reduction of the noise level by as much as one audible order of magnitude (10dB). 
Specifically, for the shear layer of a turbojet-engine exhaust, which is irregular and 
contains turbulence with mostly longitudinal orientation (i.0. in planes perpendicular 
to the nozzle lip), by causing the refraction scale in the direction transverse to the jet 
velocity to be of magnitude comparable to the longitudinal refraction length L (and 
also, possibly, a refraction time Lo z Llc,,), the associated increase in scattering and 
diffraction may provide considerable attenuation. These effects underlie the design 
of the corrugated exhaust nozzles of the first generation of jet airliners (Lighthill 
1962), and a careful optimization of the refraction properties of the shear layer 
could possibly provide an attenuation comparable to that which is obtained currently 
by means of additional shear layers (e.g. an auxiliary jet acting as a noise shield, 
such as the by-pass flow of a turbofan engine). It is emphasized, in connexion with 
the modelling of experiments, that the statistical parameters (refraction scales, mean 
height of irregularities and effective thickness of the region of turbulence) of the 
shear layer can be measured by using a test source in the jet to obtain a calibration 
spectrum, the theory then predicting (at the same station) the spectra for other source 
multipoles, emission frequencies and observation angles. In simple terms, transverse 
(and unsteady) as well as longitudinal convected irregularities and turbulent per- 
turbations can redistribute internal noise over a wider range of directions and also 
over a broader spectrum of frequencies, with a possibly significant reduction in the 
noise disturbance caused by current jet-powered aircraft. 
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by shear layers, and also his thorough comments on my drafts. To Professor Sir  James 
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